Prediksi Risiko Penyakit Jantung Sederhana Menggunakan Algoritma Random Forest Classifier Dengan Data Gaya Hidup Siswa

  • Muji Santoso Universitas Gunadarma
  • Muhammad Zydan K Universitas Gunadarma
  • Iwan Iwan Universitas Gunadarma
  • Mudrika Mudrika Universitas Gunadarma

Abstract

Penyakit jantung merupakan salah satu penyebab utama kematian di dunia yang risikonya dapat dipengaruhi oleh gaya hidup tidak sehat. Penelitian ini bertujuan mengembangkan model prediksi sederhana risiko penyakit jantung pada siswa menggunakan algoritma Random Forest Classifier dengan data gaya hidup yang diperoleh dari Kaggle. Dataset mencakup jam belajar, jam ekstrakurikuler, jam tidur, jam bersosialisasi, aktivitas fisik, tingkat stres, jenis kelamin, dan nilai akademik. Proses penelitian meliputi pra-pemrosesan data, pelatihan model, evaluasi, serta pengujian pada data uji dan kasus individual. Hasil penelitian menunjukkan model mampu mencapai akurasi, precision, recall, dan f1-score sempurna (1.00). Analisis feature importance menegaskan bahwa tingkat stres, aktivitas fisik, dan jam belajar merupakan faktor paling berpengaruh terhadap risiko. Temuan ini menunjukkan bahwa model dapat digunakan sebagai alat deteksi dini sederhana, meskipun masih terbatas karena label risiko ditentukan dengan aturan sederhana, bukan data medis aktual.

References

[1] WHO. (2025). Cardiovascular diseases. World Health Organization. [Online] Available: https://www.who.int/health-topics/cardiovascular- diseases#tab=tab_1

[2] Alotaibi AD, Alosaimi FM, Alajlan AA, Bin Abdulrahman KA. The relationship between sleep quality, stress, and academic performance among medical students. J Family Community Med. 2020 Jan-Apr;27(1):23-28. doi: 10.4103/jfcm.JFCM_132_19. Epub 2020 Jan 13. PMID: 32030075; PMCID: PMC6984036.

[3] Salah, H., & Srinivas, S. (2022). Explainable machine learning framework for
predicting long-term cardiovascular disease risk among adolescents.
Scientific reports, 12(1), 21905. https://doi.org/10.1038/s41598-022-25933-5

[4] Abdulraheem, F., Mustafa, M., & Ahmed, M. F. (2021). Heart disease prediction using machine learning algorithms: A comparative study. International Journal of Advanced Computer Science and Applications, 12(7), 277–285.

[5] Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson,
A. P., ... & Virani, S. S. (2023). Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation, 147(8), e93–e621.

[6] Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour,
L. M.& Fuster, V. (2020). Global Burden of Cardiovascular Diseases and
Risk Factors, 1990–2019: Update From the GBD 2019 Study. Journal of the American College of Cardiology (JACC), 76(25), 2982–3021.

[7] Kemenkes Ri. (2018). Hasil Riset Kesehatan Dasar Tahun 2018. Kementrian Kesehatan Ri, 53(9), 1689–1699.

[8] Malhotra, R. K., Ramar, K., Carden, K. A., et al. (2021). Sleep is essential to health: an American Academy of Sleep Medicine position statement. Journal of Clinical Sleep Medicine, 17(10), 2115-2119.

[9] Arnett, D. K., Blumenthal, R. S., Albert, M. A., et al. (2019). 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 140(11), e596-e646.

[10] Rahman, M. M., Karim, A., & Islam, S. (2022). Non-clinical predictors of cardiovascular risk in adolescents: A machine learning approach. BMC Public Health, 22(1), 1025. https://doi.org/10.1186/s12889-022-12845-2

[11] Handayani, A., Salsabila, S., Firdausiyah, A., Setiawan, A., & Nia Nesicha, Y. (2025). Predictive Analysis Heart Disease Based on Machine Learning Using the Random Forest Algorithm. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(3), 1980–1986.
https://doi.org/10.59934/jaiea.v4i3.1060

[12] Rahmada, A. ., & Susanto, E. R. (2025). Peningkatan Akurasi Prediksi Penyakit Jantung dengan Teknik SMOTEENN pada Algoritma Random Forest. Jurnal Pendidikan Dan Teknologi Indonesia, 4(12), 795-803.
https://doi.org/10.52436/1.jpti.524

[13] Hidayat, R., Sy, Y. S., Sujana, T., Husnah, M., Saputra, H. T., & Okmayura, F. (2024). Implementasi Machine Learning Untuk Prediksi Penyakit Jantung Menggunakan Algoritma Support Vector Machine. BIOS : Jurnal Teknologi Informasi Dan Rekayasa Komputer, 5(2), 161-168.
https://doi.org/10.37148/bios.v5i2.152

[14] Hossain, S., Hasan, M.K., Faruk, M.O. et al. Machine learning approach for predicting cardiovascular disease in Bangladesh: evidence from a cross-sectional study in 2023. BMC Cardiovasc Disord 24, 214 (2024). https://doi.org/10.1186/s12872-024-03883-2

[15] McKinney, W. (2022). Python for Data Analysis (3rd ed.). ISBN 9781098104030. O’Reilly Media. https://wesmckinney.com/book/
Published
2025-12-01
How to Cite
SANTOSO, Muji et al. Prediksi Risiko Penyakit Jantung Sederhana Menggunakan Algoritma Random Forest Classifier Dengan Data Gaya Hidup Siswa. Jurnal Manajamen Informatika Jayakarta, [S.l.], v. 5, n. 4, p. 311-322, dec. 2025. ISSN 2797-0930. Available at: <https://www.journal.stmikjayakarta.ac.id/index.php/JMIJayakarta/article/view/2102>. Date accessed: 03 dec. 2025. doi: https://doi.org/10.52362/jmijayakarta.v5i4.2102.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.