IMPLEMENTASI METODE BERT DAN SVM PADA ANALISIS SENTIMEN GAME GENSHIN IMPACT

  • Fazha Safha Anindya STIKOM Uyelindo Kupang
  • Yampi R Kaesmetan STIKOM Uyelindo Kupang

Abstract

The Genshin Impact game has become a global phenomenon with a large player base, especially in Indonesia, which is the 4th largest user country in the world. This study aims to analyze user sentiment towards the game by utilizing data from the social media platform X. The analysis was carried out by comparing two sentiment classification methods, namely Support Vector Machine (SVM) and Bidirectional Encoder Representations from Transformers (BERT). Data was collected through a crawling process using API X and processed through preprocessing stages, such as cleansing, tokenization, and stemming. The SVM method was chosen because of its simplicity in implementation, while the BERT method was used to explore the ability of deep learning to understand complex linguistic contexts. This study shows that BERT provides higher classification accuracy than SVM, especially in handling the diversity of language styles on social media. It is hoped that the results of this research can provide input for game developers to improve user experience through events that are more in line with community preferences.

Author Biographies

Fazha Safha Anindya, STIKOM Uyelindo Kupang

Program Studi Teknik Informatika

Yampi R Kaesmetan, STIKOM Uyelindo Kupang

Program Studi Teknik Informatika

References

[1] Andriani, R., Suhrawardi & Hapisah, 2022. Hubungan Tingkat Pengetahuan Dan Sikap Remaja Dengan. Jurnal Inovasi Penelitian, Volume Vol.2 No.10 Maret, pp. 3441-3446.
[2] Hartanto, R. & Siahaan, M., 2023. Multı-Method Analysıs On Vıdeo Game Addıctıon And Academıc. Conference on Management, Business, , Volume 3, pp. 279-290.
[3] Raharjo, S., Wulandari & Dito, H. A., 2024. Pengaruh Promosi Media Sosial Dan Reputasi Perusahaan Terhadap Keputusan Pembelian Produk Virtual Genshin Impact. Jurnal Arimbi (Applied Research In Management And Business), Volume 3, pp. 40-52.
[4] Safitri, T., Umaidah, Y. & Iqbal , M., 2023. Analisis Sentimen Pengguna Twitter Terhadap BTS Menggunakan Algoritma Support Vector Machine. Journal of Applied Informatics and Computing (JAIC), Volume 7, pp. 38-41.
[5] Supriyanto, J., Alita, D. & Isnain, A., 2023. Penerapan Algoritma K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring. JURNAL INFORMATIKA DAN REKAYASA PERANGKAT LUNAK (JATIKA), Volume 4, pp. 74-80.
[6] Fikri, M. I., Sabrila, T. S. & Azhar, Y., 2020. Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter. SMATIKA Jurnal, Volume 10, pp. 71-76.
[7] Abdullah, M. D. & Abdulazeez, A. M., 2021. Machine Learning Applications based on SVM Classification: A Review. Qubahan Academic Journal, pp. 81-90.
[8] Kurniyawan , B., Aldino, A. A. & Isnain, A. R., 2022. Sentimen Analisis Terhadap Kebijakan Penyelenggara Sistem Elektronik (Pse) Menggunakan Algoritma Bidirectional Encoderre Presentations From Transformers (Bert). Jurnal Teknologi dan Sistem Informasi (JTSI), 3(E-ISSN: 2746-369), pp. 98-106.
[9] Sambada, F. P. & Ariatmi, S. Z., 2024. An Analysis Of Impoliteness Strategies Of Genshin Impact Player In 1st Anniversary Posted On Twitter. Jurnal Onoma: Pendidikan, Bahasa dan Sastra, Volume 10, pp. 322-332.
[10] A, D. R. & Riti, Y. F., 2024. Analisis Sentimen Ulasan Aplikasi Genshin Impact di Play Store Menggunakan Random Fores. Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika, pp. 578-586.
[11] Ridwansyah, T., 2022. Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier. KLIK: Kajian Ilmiah Informatika dan Komputer, Volume 2, pp. 178-185.
[12] Putri, D. D., Nama, G. F. & Sulistino, W. E., 2022. Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (Dpr) Pada Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Informatika dan Teknik Elektro Terapan (JITET), Volume 10, pp. 34-40.
[13] Alghifari, F. & Juardi, D., 2021. Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes. Jurnal Ilmiah Informatika (JIF), Volume 9, pp. 76-81.
[14] Darwis, D., Siskawati, N. & Zaenal , A., 2021. Penerapan Algoritma Naive Bayesuntuk Analisis Sentimen ReviewData Twitter BMKG Nasional. Jurnal TEKNO KOMPAK, Volume 15, pp. 131-145.
[15] Darwis, D., Pratiwi, E. S. & Pasaribu, A. F. O., 2020. Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia. Jurnal Ilmiah Edutic, Volume 7, pp. 1-11.
[16] Romadhani, F., Mahbubah, N. A. & Kurniawan, M. D., 2021. Implementasi Metode Lean Six Sigma Guna Mengeliminasi Defect Proses Produksi Purified Gypsum Di PT AAA. Jurnal Peradaban Sains Rekayasan Dan Teknologi, Volume 9, pp. 89-103.
[17] Atika, D., Styawati & Aldino, A. A., 2022. Term Frequency-Inverse Document Frequency Support Vector Machine Untuk Analisis Sentimen Opini Masyarakat Terhadap Tekanan Mental Pada Media Sosial Twitter. Jurnal Teknologi dan Sistem Informasi (JTSI), Volume 4, pp. 86-97.
[18] Rina, Hidayat, T. & Saputri, D. U. E., 2024. Analisis Percepatan Pemulihan Ekonomi Indonesia Pasca Pandemi Dengan Big Data Dan Deep Learning. JATI (Jurnal Mahasiswa Teknik Informatika), Volume 8, pp. 3244-3252.
Published
2025-02-15
How to Cite
ANINDYA, Fazha Safha; KAESMETAN, Yampi R. IMPLEMENTASI METODE BERT DAN SVM PADA ANALISIS SENTIMEN GAME GENSHIN IMPACT. Jurnal Manajamen Informatika Jayakarta, [S.l.], v. 5, n. 1, p. 52-60, feb. 2025. ISSN 2797-0930. Available at: <https://www.journal.stmikjayakarta.ac.id/index.php/JMIJayakarta/article/view/1781>. Date accessed: 06 july 2025. doi: https://doi.org/10.52362/jmijayakarta.v5i1.1781.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.