PENGELOMPOKAN DATA TUNGGAKAN PEMBAYARAN KREDIT MOBIL MENGGUNAKAN METODE CLUSTERING (STUDI KASUS: CV CITRA KENCANA MOBIL)
Abstract
Arrears or installments are one of the problems for companies in dealing with customers who have delays in paying pre-approved car installment bills, while the cause of arrears in car payment installments is because of the necessities of life and problems that will occur in the future no one can predict. If at the beginning the payment was smooth, it is not certain that in the future there will be no customers who are late paying installments until they have to be withdrawn. (I Wayan Sudirman, 2000). CV Citra Kencana Mobil Medan is a company that sells used and new cars with credit and cash payment systems. Due to the many problems that occur in arrears of car installment payments made by customers in 2017-2022 which causes data to accumulate, and it is also difficult for companies to provide information and follow-up in dealing with problems to customers quickly, therefore it is necessary to have a method in processing these data by clustering customer data. Based on the research conducted, there were 3 groups of 20 data, namely group 1 with 7 data and 2 groups with 8 data and group 3 with 5 data, with the most results in cluster 2, namely the data group for arrears in car loan payments in the car brand group ( X) is the Honda Jazz RS, and for the sub-district group (Y) which is in arrears, namely Medan Amplas which is in arrears (Z) for 1-4 months.
References
[2] Buulolo, . S.Kom., M. Kom, Efori. (2020). Data Mining (1st ed.). CV Budi Utama.
[3] Defita Br Manurung, S., & Simanjuntak, M. (2022). Penerapan Data Mining Pengelompokan Data Pada Penghasilan Orang Tua Siswa Menggunakan Metode Clustering Algoritma K-Means Pada SMA Negeri 1 Selesai. Jurnal Sistem Informasi Kaputama (JSIK), 6(2). www.kaputama.ac.id
[4] Huda Ahsina, N., Fatimah, F., Rachmawati, F., Ibn Khaldun Bogor JlKH Sholeh Iskandar Km, U., & Bogor, K. (2022). Analisis Segmentasi Pelanggan Bank Berdasarkan Pengambilan Kredit Dengan Menggunakan Metode K-Means Clustering. In Fitria Rachmawati Jurnal Ilmiah Teknologi Informasi Terapan (Vol. 8, Issue 3).
[5] I Wayan Sudirman. (2000). Manajemen Pembiayaan Bank Syariah (1st ed.). Kencana.
[6] Kusrini, & Taufiq Luthfi, E. (2009). Algoritma Data Mining (T. Ari Prabawati, Ed.; 1st ed.). CV Andi Offset.
[7] Maulita, Y., & Arliana, L. (2022). Penerapan Data Mining Pengelompokan Peserta Bpjs Ketenagakerjaan Berdasarkan Program Yang Diambil Menggunakan Metode Clustering. Jurnal Sistem Informasi Kaputama (JSIK), 6(2).
[8] Muslihudin, muhammad, & oktafianto. (2016). Analisis dan Perancangan Sistem Informasi (A. Pramesta, Ed.; 1st ed.). CV. Andi Offset.
[9] Otong Kadang, M. (2021). Algoritma dan Pemrograman (Abd. K. Muzakir, Ed.; Pertama). Humanities Genius.
[10] Pa, P., Manaor Hara Pardede, A., & Rahmadani, S. (2022). Pengelompakan Data Pencari Kerja Terdaftar Berdasarkan Umur Dan Pendidikan Menggunakan Metode K-means Clustering Di Dinas Tenaga Kerja Dan Perindustrian Perdagangan Kota Binjai. Jurnal Informatika Kaputama (JIK), 6(3).
[11] Suyatno, T. (2017). Dasar - Dasar Perkreditan (11th ed.). PT Gramedia Pustaka Utama.
[12] Tjolleng, A. (2017). Pengantar pemrograman MATLAB (M. S. A. Tjolleng, Ed.; 1st ed.). PT. Elex Media Komputindo. https://www.researchgate.net/publication/334945947
[13] Wanto, A., Noor Hasan Siregar, M., Perdana Windarto, A., Hartama, D., Wiwik Sri Rahayu Ginantra, N. L., Napitupulu, D., Surya Negara, E., Ridawan Lubis, M., Vita Dewi, S., & Prianto, C. (2020). Data Mining Algoritma & Implementasi (T. Limbong, Ed.; 1st ed.). Yayasan Kita Menulis.

This work is licensed under a Creative Commons Attribution 4.0 International License.